Physics 200B

Mechanics II

Problem Set I: Due Thursday, January 24, 2013

- 1.) Derive Hamilton's equations directly from a modified version of the Principle of Least Action.
- 2.) Construct the Hamiltonian for the heavy symmetric top with one point fixed and derive the Hamiltonian equations of motion. Assume the top spins in a gravitational field.
- 3.) Fetter and Walecka 6.4
- 4.) Consider an acoustic wave propagating in a medium with index of refraction $n(\underline{x})$, in the limit of geometrical optics.
- a.) Show that the incremental total phase $d\Phi$ can be written as:

 $d\Phi = k \cdot dx - \omega dt \,.$

Derive the ray equations by extremizing, Φ .

- b.) Extremize the 'abbreviated phase' $\Phi_0 = \int k d\ell$ to obtain a differential equation for the ray path. Explain the difference between this result and that of (a.).
- c.) Simplify your result from (b.) and carefully discuss its physical content. Give examples in your discussion.
- 5.) Consider the Helmholtz equation for a sound wave in a medium with index of refraction $n(\underline{x})$.

$$\nabla^2 \psi + \frac{\omega^2}{c_0^2} n(\underline{x})^2 \psi = 0.$$

a.) For $n(\underline{x})^2 = 1 + \delta(\underline{x})$, where $\delta <<1$, and assuming sound is beamed in the \hat{z} direction, show the Helmholtz equation may be (approximately) re-written as:

$$2ik_z\frac{\partial\psi}{\partial z}+\nabla_{\perp}^2\psi+\frac{\omega^2}{c_0^2}\delta(\underline{x})\psi=0.$$

- b.) Define k_r here. The above equation is called the parabolic wave equation. Discuss
 - i.) the approximations inherent to this formulation.
 - ii.) the physical meaning of the different terms.
 - iii.) the restrictions on $\partial \psi / \partial z$, etc.
- c.) Now, write $\psi = A(\underline{x})e^{i\phi(\underline{x})}$. Use the parabolic wave equation to derive coupled equations for phase $\phi(\underline{x})$ and amplitude $A(\underline{x})$. Discuss the physical content of your result. Can you relate your result to that obtained using eikonal theory?
- 6.) Consider a harmonic oscillator with distinct spring constants for the x, y, z directions. Derive and solve the Hamilton-Jacobi equation for this system.
- 7.) Consider an ocean with sound speed a function of depth, so that $c_s(z)$ is maximal at z_0 , where z is depth as measured from the surface. Using Fermat's Principle, determine the path that a ray takes to traverse a long distance ℓ .